
of the back-pressure ahead of shock front 1 which determined by it. 
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PHASE TRANSITIONS IN SHOCK WAVES (REVIEW) 

L. V. Al'tshuler UDC 536.424 

INTRODUCTION 

The propagation of shock waves in a number of solids is accompanied by polymorphic trans- 
itions which change their atomic structure. The formation of new crystalline modifications 
in a short time of the order of i0 ~sec is one of the most interesting problems in the phys- 
ics of shock waves and high pressures. Dynamic recrystallization processes are extensively 
used in practice, e.g., in machine-building technology, for strengthening components, and for 
obtaining metastable high-pressure phases. 

Phase transitions propagating in a metal at the detonation velocity were first detected 
in iron [i]. By now, polymorphic transitions in shock waves have been recorded in many me- 
tals, semiconductors, oxides, and almost all minerals and rocks. The characteristics of a few 
typical transitions, investigated under both dynamic and static conditions, are given in Ta- 
ble i, where aHy P is the Hugoniot yield point, ~, is the transition stress from dynamic meas- 
urements, and p, is the transition pressure from static measurements (all quantities are in 
kilobars). 

The problem of phase transitions in shock waves has various aspects. The thermodynamic 
analysis is based on the limiting parameters of the steady-state regimes of propagation of 
the shock waves. The set of stationary states determines the Hugoniot adiabat of the com- 
pressed medium. The intersection with the phase boundaries causes a break in the adiabats 
and under certain conditions can lead to decay of the shock front and formation of two-wave 
configurations from the advancing waves and the slower transition waves. A knowledge of the 
kinetics of the transitions is particularly important for obtaining a realistic picture of 
the phenomenon; transitions of martensite type have a number of special features and proceed 
in compression and discharge wave fronts in accordance with specific mechanisms of low-temp- 
erature recrystallization. 

i. Hugoniot Adiabat in the Phase Plane 

i.i. Phase-Transition Criterion. The effect of melting and polymorphic transitions on 
the configuration of the Hugoniot adiabat was investigated in [8-13]; the results from these 
studies are partially discussed in the review [14]. 

The thermodynamic characteristics of the medium change discontinuously at the boundary 
between the single-phase region and the region of existence of phase-mixture equilibrium. 
As a result, the shock-compression adiabat undergoes a discontinuous change on intersecting 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
93-103, July-August, 1978. Original article submitted June 6, 1977. 

496 0021-8944/78/1904-0496507.50 �9 1979 Plenum Publishing Corporation 



the phase boundary. The direction of deflection of the adiabat (Fig. in) is given by the 

equation [9] 
sgn h = sgn Q [dT,'dp --(OT/OP)st ]. 5 - (OV OP)r+ --(OV/OP)r_ ' ( 1 . 1 . ! )  

where  t h e  d e r i v a t i v e s  (~V/~p)r+ and (3V/~p) r_ a r e  t a k e n  a l o n g  t h e  dynamic a d i a b a t  above  and 

be low t h e  p o i n t  o f  d i s c o n t i n u i t y ;  ( 3 T / 3 P ) s x  i s  t h e  d e r i v a t i v e  of  the  f i r s t  p h a s e ;  dT/dp i s  
t h e  d e r i v a t i v e  o f  t h e  phase  b o u n d a r y ;  and Q i s  t h e  l a t e n t  h e a t  o f  p h a s e  t r a n s i t i o n .  

For  f u r t h e r  a n a l y s i s ,  t h e  H u g o n i o t  e q u a t i o n  H -  H c = ( x / 2 ) ( p - -  pc ) (V + Vc) i s  w r i t t e n  
i n  d i f f e r e n t i a l  fo rm [8,  12,  1 3 ] ,  r e l a t i n g  (~V/3p) r w i t h  (3V/3p)  s and the  s l o p e  m 2 = ( p -  
p c ) / ( V c -  V) o f  the  R a y l e i g h - - M i c h e l s o n  l i n e  (F ig .  l b )  ( h e r e  and ab o v e ,  Pc and V a r e  the  
s t a t e  p a r a m e t e r s  ahead  o f  the  wave f r o n t ) .  The r e q u i r e d  d i f f e r e n t i a l  e q u a t i o n  ~s o b t a i n e d  
with the use of the identity 

(OHlOP)r --  V -- T (Op:'OT)s [(OV/Op)r (OV/Op)s]; 

substituting the relationship 

(OH/Op)r - -  V -- (1/2) (p --  p~) [(OV/Op)r A- m-21, 

we obtain 

P--Pc  {O.T~ " (1.1.2) 
I 

2T ~Op/s  

. The discontinuity in the adiabat occurs because of the different values of the isoen- 
tropic derivatives on the two sides of the phase boundary. Compared to the adjoining single- 
phase states (subscript I)the compressibility of the phase mixture (subscript ~) changes by 
the amount [ii, 14] 

(OV/Op)s~-- (OVlOp)sl = - -  (%11T) [dT/dp - -  (OTlOp)sll% (i. i. 3) 

As r e g a r d s  t he  d e r i v a t i v e  ( 3 T / 3 P ) s ,  , in  p -- T c o o r d i n a t e s  a l l  the rmodynamic  p r o c e s s e s  
o c c u r r i n g  i n  t h e  t w o - p h a s e  r e g i o n  a r e  d e s c r i b e d  by t h e  e q u i l i b r i u m  l i n e .  T h e r e f o r e ,  

(OT/Op)sr --(OTl@)s~-- dr/dp (orl@)sl. (1.1.4) 

As is well known [15], the wave front loses stability if at any point the slope of the 
adiabat becomes smaller than the slope of the wave ray [if (3V/3p) F < --m-2]. An instability 
of this type can appear when, the second term in the right-hand side of (1.1.2) becomes nega- 
tive due to large compressibility of the phase mixture. According to (1.1.2) and (1.1.3), 
the criterion for the stability loss is the inequality 

(%1.'T) [dTidp - -  (OTtOp)s~] 2 > m --~ -~ (OVlOp)s~. ( 1 . 1 . 5 )  

For  o b t a i n i n g  some e s t i m a t e s  i t  i s  c o n v e n i e n t  to  i n t r o d u c e  t h e  volume e x p a n s i o n  c o e f f i c i e n t  
a ,  = (Cpx /VT) (OT/3P) sx ,  t he  wave v e l o c i t y  D, and t h e  speed  o f  sound c~.  Then i n e q u a l i t y  
( 1 . 1 . 5 )  can  be  r e w r i t t e n  in  the  f o l l o w i n g  form:  

L V T dp ~ v ~  > D: c~" 

A different situation occurs if the values of dT/dp and (3T/3p) are close and therefore 
the wave retains stability. In this case, the increase in the compressibility [as in (i.i. 
3)] can be neglected as the square of a small quantity and only the change in the quantity 
(3T/~p) s [as in (1.1.4)] need be taken into consideration. 

1.2. Classification of Phase Transitions and Adiabat Configuration. The classification 
of phase transitions developed in [12, 13] is based on different variants of arrangements of 
the phase boundary in relation to the isotherms and isoentropic lines of the low-pressure 
phase. In p -- T coordinates the equilibrium line is characterized by the derivatives 

dr~@ = (T/Q)(V~ --  V1), 
dS1/dp ~ (%tiT)[dT/dp - -  (OT/Op)s~ ]. 

With the use of the identities 

dVx/dp - -  (dV/dp) 7 4- (OV, /aT)pf lT l@,  (i. 2. i) 
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d"P- = T ~-~']pi I. dp \ ~P/siJ  (1.2.2) 

the values of these derivatives determine the slopes of the dV1/dp boundaries in p -- V co- 
ordinates. 

The basis of the classification is provided by different combinations of the signs of 
dT/dp and dSl/dp, presented in the left part of Table 2, together with possible [12] combina- 
tions of the signs of AV = V2 -- V~ and Q. The orientations of the phase boundaries on p --V 
diagrams determined from (1.2.1) and (1.2.2) and the signs of deflections of the adiabats as 
given by (I.i.I) are shown in the right part of Table 2. For the first type of transition, 
in p -- V variables the phase boundary has a milder slope than the isotherms of the first 
phase, for the second type, it is steeper than the isoentropic lines; and for the third type, 
the slope of the boundary is greater than that of the isotherms and smaller than that of the 
isoentropic lines. 

We first consider phase transitions of the second and third types accompanied by a vol- 
ume increase, i.e., normal melting of solid substances (see Table 2). Here inequality (i. 
1.5) is not satisfied, the shock wave remains stable, and the formation of the liquid phase 
occurs over the thickness of the front of a single surface discontinuity [16]. The possible 
configurations of the adiabats for ~S~/~p < 0 and ~S~/~p > 0 are depicted in Fig. 2, where 
the symbols Sol and L denote the regions of solid and liquid state, respectively. In the 
first case (Fig. 2a), in intersecting the boundary of the two-phase region, the adiabat is 
deflected to the left (A < 0); in the second case (Fig. 2b), it is deflected to the right 
(A > 0). In metals and ionic compounds dS1/dp Ip=o < 0 [13]. Perhaps this situation persists 
even at high pressures. What happens in realis is still unknown, since as a rule, discon- 
tinuities of the adiabat for the parameters of melting have not been detected in a large num- 
ber of measurements of the dynamic compressibility of elements and chemical compounds. There- 
fore, it may be assumed that for the investigated substances the melting curves are very sim- 

�9 ilar to the isoentropic lines of the solid phase. Apparently, sulfur is the only known ex- 
ception [17]. The sharp increase of the slope of its adiabat shows that this transition, be- 
longs to the second type. 

On increasing the pressure, all polymorphic transitions occur with a volume decrease. 
Denser phases are formed also during solidification of normal liquids and anomalous melting. 
For the transitions of the first type, the schematic pattern of intersection of the two-phase 
region by the shock-compression curve is shown in Fig. 3. Examples of such transitions are 
Fe~ §162 and the melting of bismuth. The polymorphic transitions ~-quartz--stishovite, graph- 
ire--diamond, and boron nitride--borazon belong to the second type (Fig. 4). As regards solid- 
ification of liquids, it may not even occur during shock compression, if the adiabat does not 
intersect the phase boundary [9]. 

As a rule, the formation of high-pressure dense phases leads to a decay of the shock 
front. The dynamic compression curve (Fig. 5a) for two-wave configurations contains singular 
points i, 2; and 3, which divide it i~to four branches: adiabat of the first phase with ini- 
tial state Po, Vo; adiabat of the double compression of the phase mixture centered at pl, VI; 
and adiabat of the second phase with centers at pl, V~ at pressures lower than p3 and Po, Vo 
at pressures larger than P3. The last discontinuity, with the disappearance of the two-wave 
configuration at point 3, is caused [18, i0] by the change in the nature of compression from 
double to single. Analytically, the transition to different Hugoniot adiabats is interpreted 
through the substitution of the corresponding values of (~V/~P)s, (~T/~P)s, and Pc into Eq. 
(1.1.2). 

The adiabat of the single (one-wave) compression is very similar to the curve investiga- 
ted above and can be formally constructed even for the instability range p~ < p < P3. The 
states on this adiabat satisfy the three conservation laws and also the condition of overall 
(relative to Po, Vo) entropy increase if they do not lie too close to the lower boundary of 
the interval. Nevertheless, a direct transition of the type OC is not realized in practice 
due to the gas-dynamic instability and breakdown of the second law of thermodynamics. Ac- 
tually, single-wave transition OC is equivalent to three individual discontinuities between 
the equilibrium states O, A, B, and C moving with the same speed. Of these, the first and 
third increase the entropy of the medium, whereas the intermediate discontinuity AB, contain- 
ing the segment of the adiabat with negative mean curvature, decreases the entropy and is 
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TABLE I 

Material Oily P oi p, 

F e  

KC1 
Fe304 
Si 
Ge 
GaAs 

10• 
0,7:k0,3 

45:t:5 
42-4-3 
84• 

i29• [2] 
2t___0.2 [3] 

216+15 [4] 
i05:i:6 [5, 6] 
t42+3 [5, 7] 
203__+ii [4] 

1t8--133 
20:k0,5 

250__+15 
i04--t40 
i20--i25 
t75--185 

TABLE 2 

Type of 
transition 

c 

d T  

<0 

>0 

>0' I 

dSt  

<0 

>0 

<0 

AV 

<0 

<0 
>0 

>0 

Q 

>0 

>0 

>0 

dr, a--F A 

>joy I <0 
kO~/s, >o 

\Op]Tl <0 

\OPJs~ 

Remark 

Polymorphic transition; 
anomalous melting 

Polymorphic transition; 
solidification 

Melting 

Pr, 1\ Pr,~ Pr 
! +D 

a b 

�9 0 

a b 

v 

Fig. i Fig. 2 

therefore unstable. The proposed concept of Bethe instability is the most rigorous, since 
the discussion of the discontinuity as an integral [19] decrease of entropy on an individual 
segment of the front does not contradict [15] the second law of thermodynamics. 

2. Kinetics of Crystallization in Shock Waves 

The information on the kinetics of transitions in shock waves has been obtained primari- 
ly from the study of plane shock pulses. Therefore, we consider the formation of shock pulses 
in the simplest representation [20, 18], i.e., formed by the impact of a plate of finite 
thickness on the substance undergoing the phase transition. For a given velocity of impact 
on the collision surface, states that lie on the retardation curve C,C of the striker appear 
(see Fig. 5a). The instantaneous response of the medium is its compression along the meta- 
stable state of the first phase up to pressure CI. Subsequent transitions lead to a pressure 
decrease in the wave front, i.e., along the metastable adiabat of the first phase in the lay- 
ers behind the front and on the collision surface, i.e., along the retardation curve CC:. On 
the p--V diagram the set of states forms an evolutionary trajectory which approaches the wave 
ray I--C asymptotically. The two-wave profile of the wave thus formed is schematically shown 
in Fig. 5b together with the discharge shock wave [15, 18]. 
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A mathematical description of the disintegration of the front requires numerical compu- 
tations based on some idealized scheme of the phenomenon. An appropriate theory of the prob- 
lem has been developed in [21-25]. The simplest model is the hydrodynamic slngle-velocity 
model, which assumes the equality of pressures, temperatures, and velocities for the parti- 
cles of both phases. In carrying out the computations, the equations of motion are closed 
by the equations of state of the two phases and the expression for the rate of transition 

= I)' ch, (2.1) d l / d t  (~q-- ' t  �9 . 

where f is the concentration of the second phase, feq is its equilibrium concentration, and 
tch is the characteristic time of transformation. If the velocity of the first plastic wave 
is close to the acoustic velocity, then its amplitude along the path of propagation under- 
goes exponential attenuation: 

p (x) = Pl + (pc, - -  pl) exp (--  x / ( 2 O ~ ) ,  

where  Pc~ i s  t he  a p p l i e d  p r e s s u r e  and p~ i s  the  t r a n s i t i o n  p r e s s u r e  ( see  F i g ,  5a) o 

A c c o r d i n g  to the  r e p r e s e n t a t i o n s  d i s c u s s e d  above ,  t he  s t a r t  and t e r m i n a t i o n  o f  the  f o r -  
.ma t ion  o f  t h e  new p h a s e  o c c u r  a t  the  e q u i l i b r i u m  t r a n s i t i o n  p r e s s u r e s ,  and the  a t t e n u a t i o n  o f  
' t h e  f i r s t  p l a s t i c  wave,  the  w i d t h  o f  the  second  wave,  and the  r e l a x a t i o n  o f  the  s t r e s s e s  a t  
t he  c o l l i s i o n  s u r f a c e  a r e  g o v e r n e d  by a s i n g l e  c h a r a c t e r i s t i c  t ime of  t r a n s f o r m a t i o n  t c h .  On 
a f i r s t  i m p r e s s i o n ,  the  e x p e r i m e n t a l  r e s u l t s  s u p p o r t  such  s i m p l i f i e d  t r e a t m e n t .  The p r e s s u r e  
p r o f i l e s  r e c o r d e d  by manganin  s e n s o r s  in  [ 2 6 ] ,  d e v o t e d  to the  s t u d y  of  phase  t r a n s i t i o n s  i n  
iron, are shown in Fig. 6. These experimental curves show the formation of the transition 
wave and the discharge shock wave appearing during reverse recrystallization. Similar re- 
sults have been obtained in the study of potassium [27, 28], silicon, and germanium [15] hal- 
egonides by the magnetoelectric technique [18]. 

Let us ascertain how closely the transition pressures recorded under dynamic and static 
conditions coincide. For a correct comparison it is necessary to consider the anisotropy of 
the one-dimensional compression in the shock wave, which is related to the hardness. Accord- 
ing to the elastoplastic model, the measured stresses in the shock wave exceed the hydrosta- 
tic pressures by two-thlrds of the dynamic yield point Y. For the Poisson coefficient ~ = 
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0.33, this amount is equal to three times the Hugoniot elasticity limit OHYP [18, 25]. This 
approach is not valid for all materials. Experiments with sapphire [29] and tungsten [30] 
show that here a catastrophic loss of hardness occurs above the elasticity limit and (as a 
consequence) the dynamic recordings are superposed on the hydrostatic adiabats. In spite of 
some ambiguity in the interpretation, the data presented in Table 1 indicate that the transi- 
tion pressures almost coincide under static and dynamic conditions. This agreement is found 
in iron, potassium chloride, magnetite, silicon, and (after correcting for hardness) in germ- 
anium and GaAs. An exception to this general rule is quartz, in which the transition pres- 
sure in the shock wave coincides with the Hugoniot elasticity limit and exceeds the equilib- 
rium pressure [31]. 

We now turn to the kinetic characteristics of the transitions in shock waves. For iron~ 
the most accurate results have been recently obtained in [2] with the use of laser interferom- 
etry on samples of variable thickness. The characteristic time of transition, computed 
from the attenuation of the first wave for different impact pressures, is 0.16 Msec. It by 
far exceeds the time scale of the transition wave (0.05 Msec) recorded in the same experi- 
ments. "The detected contradiction shows that the model assuming a single constant relaxa- 
tion time is too simplified" [2]. Perhaps the initial, purely thermodynamical interpretation 
of the phenomenon is far from reality. 

Interesting kinetic characteristics of transition are detected in the study of the phase 
transition in potassium halogenides [28, 3, 16]. Recording the bulk velocity profiles during 
dynamic compression and discharge, the authors of [28] show the dependence of the transition 
time in the second plastic wave on its amplitude (tch ~ 0.4-0.6 ~sec for 28 and 0.2 Msec at 
38 kbar) and the incompleteness of the phase transition behind its front. The high- and low- 
pressure phase mixture formed here is represented in Fig. 7 by the metastable adiabat 1--2 
merging into the adiabat of the second phase at pressures P2 much larger than the equilibrium 
pressure. A strong hysteresis of the reverse recrystallization in the discharge wave is also 
established in [28]. The start of the process (point 3) coincides with the formation of the 
rarefaction shock wave and occurs at pressures differing from the equilibrium pressure by a 
factor of ~o (i0 kbar instead of 20 kbar). Subsequently [3], these results were supplemen- 
ted by the measurements of the relaxation of the pressures at the collision surface. The 
first stage of transition occurring "instantaneously" led to states of the same metastable 
adiabat of the phase mixture (see Fig. 7). The completion of the process occurred with meas- 
surablevelocitiesthat were different for different crystallographic directions. At pres- 
sures an order of magnitude higher than the equilibrium pressure, the transition times in 
potassium halogenides were estimated [16] optically from the reflectivity of the front. The 
two-wave configuration does not appear at such pressures and the formation of the dense phase 
occurs over the thickness of the single compression wave front for a period smaller than i0 -~2 
sec. 

Many of the above-mentioned characteristics are typical not only for potassium halogen- 
ides. The incompleteness of the transitions at large residual pressures occurs in boron ni- 
tride [28], iron [2], quartz [33, 31], and graphite [33]. In quartz and graphite [34], the 
metastable adiabats of the mixture coincide remarkably with the critical wave ray 1--3 of Fig. 
5a. The hysteresis in the reverse recrystallization is clearly seen in iron (see Fig. 6). 
Its existence makes it possible to synthesize diamond and borazon in storage ampules. 

3. Mechanisms of Phase Transitions in Shock Waves 

As sho~ by the results of Sec. 2, the recrystallization in shock waves obeys specific 
and mainly nonthermodynamic rules. This fact was given attention in the mid-1960's in a num- 
ber of investigations, in particular [35, 36]. 

The specific features of polymorphic transitions in dynamic pulses is naturally explained 
by the basic generality of the mechanism of deformation and transitiQnland by the special 
characteristics of shock discontinuities. "For sufficiently large pressure gradients the 
shock front may be compared with a mill, which crushes the noncompacted material in its for- 
ward part and then transfers the atoms of high-density region into states that are stable un- 
der these conditions" [35]. The asymmetry of the transitions during the application and re- 
moval of the pulsed loads is related to the effect of the shock front on the substructure of 
the medium. The reverse recrystallization occurs during monotonic pressure decrease in the 
isoentropic discharge wave. On the other hand, the formation of the high-pressure phase is 
preceded by the passage of the first plastic wave. Its shock front is a surface on which 
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point, linear, and two-dimensional defects, which become crystallization centers at super- 
critical pressures, are produced in abundance. Apparently, the phase transitions in shock 
waves are always similar in type to martensite transitions. The rapid transition of one type 
of lattice into another is facilitated by nondiffusion martensite rearrangements; they are 
based on the cooperative motion of many atoms to small distances. 

Typical martensite structures are observed in iron and ferrous alloys in the presence 
of dual recrystallization, ~--a-~. Samples preserved after shock compression have structures 
containing stacks of fine sheets doubly correlated to the lattice of the initial phase. Ac- 
cording to [37], in e--g transitions only one variant of orientation is realized for each hab- 
it plane, which results in a coherent crystallization of the e phase. The reverse transitiDn 
in the same habit plane (i12)~ restores the original orientation of the s-phase crystals. 
Some definite orientation relationships of martensite type are detected [38] in the shock- 
wave formation of the m-phase of titanium. 

The most direct information is obtained in [39], where the transition of a boron nitride 
monocrystal into a monocrystal of borazon wurtzite is recorded using pulsed x-ray analysis, 
Here the thickness of the wave front perhaps covers several lattice periods. It is interest- 
ing to note that the cubic structure of zinc blende is the stable phase of high pressure. 
However, from the point of view of crystal geometry, martensite transition from the original 
hexagonal structure into hexagonal wurtzite has priority. Similar arguments developed in 
[32] explain why in a shock wave quartz at once goes over into stishovite, omitting the in- 
termediate coesite phase. "The transition into coesite requires transition of 46 quartz 
cells into 3 coesite cells. Here the role of final reshuffling of the molecules, which is es- 
sentially a nondiffusion process, increases sharply." 

The theoryof martensite transitions [40-42] was initially developed for coherent phase 
transitions occurring at atmospheric pressure under the influence of rapid temperature chan- 
ges. However, the basic rules and results of the theory are equally applicable also to poly- 
morphic transitions in shock waves~and discharge waves. 

According to the established ideas, nuclei (embryos) present in the initial phase under 
subcritical conditions are the centers of crystallization of martensite. Therefore, nuclei 
are present in some quantity in the uncompressed material and are formed as dislocations 
[35], twins [43], or packing defects in the front of the first plastic wave. For materials 
in which the phase-transition pressure coincides with the yield point (quartz), the develop- 
ment of the crystallization centers and high-pressure phase occurs simultaneously and auto- 
catalytically. 

The activation of the nuclei, i.e.,their transition into active centers of crystalliza- 
tion of the new phase, occurs at a nonequilibrium pressure, when the chemical ponderomotive 
force balances the surface energy of the nucleus and the deformation energy of the crystal 
matrix surrounding it. The largest nuclei are activated first. The martensite points of 
direct (Pld) and reverse (P:r) transition during loading and discharge determine the devia- 
tions from the thermodynamic equilibrium required for this purpose. The true equilibrium 
pressure lies between these limits, perhaps nearer to the upper limit. For iron [2], P~d = 

130 kbar and P~r = 98 kbar. 
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The mlmber of active centers of crystallization increases with the deviation from ther- 
modynamic equilibrium. As a result of self-braking processes, which are not yet completely 
clear, the martensite crystals thus formed have limiting dimensions that are characteristic 
of each substance. Therefore, very definite concentrations fm(P) of the new phases, depend 
only on the number of active centers and determine the positions of the metastable adiabats 
PFm of incomplete transition during loading and discharge, correspond to nonequiiibrium pres- 
sures. 

The athermal kinetics of the martensite transition is determined by the number of centers 
and the rate of linear growth of martensite crystals. The latter equals the velocity of 
spiral dislocations [4] under the action of shear stresses T ~ (G -- Gi)/Y ~ (p -- pi)/y, where 
G i and Pi are, respectively, the Gibson potential and pressure required for the activation 
of a nucleus of radius ri; y is the shear deformation of the lattice transition. According 
to the estimates obtained for carbon steel [44], the transition periods of single grains are 
10-6-10 -7 sec, which in terms of time scales coincide with the transition periods in shock 
waves. 

In a number of materials, rapid athermal transitions occur simultaneously with slower 
athermal processes of growth of the new phase due to thermally activated formation of crys- 
tallization: centers. Similar phenomena of two-stage transition occur during dynamic loading 
of monocrystals of potassium chloride [3]. 

The present concepts of the mechanisms of martensite transitions may serve as a good ba- 
base for the future development of the theory of transitions in shock waves. Such a theory 
must of necessity include a large number of empirical data on the position of martensite 
points, metastable adiabats [or fm(P)], and two relaxation times (in general, pressure de- 
pendent) -- t a for the athermal process and t t for the thermally activated process. Athermal 
kinetics dominates at the first stage and is governed by the equation 

d/ /dt  = (IMP) - -  f) / ta (0 < f < fro@))., 

while thermally activated transition occurring at the rate 

d]/dt = (1 -- f)/t,t (Ira < ] < t) 
dominates at the second stage. 

Further understanding of transition mechanisms requires new experimental and theoretical 
investigations. These investigations may, in particular, elucidate the extent to which local 
heating of materials in the zones of intense slip [29, 30, 45, 46] influences the kinetics of 
formation. 

The author is grateful to E. A. Dynln, O. N. Breusov, and N. M. Kuznetsov for helpful 
discussions. 
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SHOCK WAVES IN DILATANT AND NONDILATANT MEDIA 

S. G. Artyshev and S. Z. Dunin UDC 622.235.5+539.3+539.214 

With the explosion of a charge in an isotropic brittle medium at rest and compressed by 
a lithostatic pressure Ph, a shock wave starts to propagate outward from the center of the 
explosion. A step-by-step analysis of the character of the breakdown as a function of the 
properties of the rock and the lithostatic pressure is given in [1-3], where the breakdown 
of the rock is described without taking account of the dilatant character of the behavior of 
the medium, i.e., without taking account of the possibility of a change in the volumetric de- 
formation with shear [4]. 

The present article discusses the possibility of the propagation of a spherically symme- 
trical breakdown wave in dilatant and nondilatant plastic media. 

The source of the breakdown wave, located in a spherical cavity (cavern) with an initial 
radius ao, is a gas having an initial pressure Pko" It is assumed that the Prandtl plasti- 
city condition is satisfied behind the front of the wave: 

~ - -  % = k § m(~,  + 2%),  (!) 

where k and m are known constants; c r and a ~ are the stresses in a radial direction and in 
directions orthogonal to it, respectively. The flow of the rock behind the front is described 
by the equations of the convservation of momentum and mass and the equation of dilatancy: 

p(Ou/Ot + uOu/Or) = Oa~/Or + 2(a, - -  o~)/r; (2) 

OplOt + uOp/Or + p(Ou/Or + 2u/r) = 0; (3) 

Ou/Or ~ 2u/r = A(p, 5~)lOu/Or - -  u/r]., (4) 

w h e r e  p i s  t h e  d e n s i t y  o f  t h e  medium; u i s  t h e  mass  v e l o c i t y ;  r i s  t he  r a d i u s ;  t i s  t h e  t i m e ;  
and  A(p,  g r )  i s  t h e  r a t e  o f  d i l a t a n c y  [ 4 ] .  At t h e  f r o n t  o f  t h e  b reakdown  wave ,  t h e  c o n d i t i o n s  
o f  t h e  c o n s e r v a t i o n  o f  mass  and momentum a r e  a d o p t e d :  

uf(t) = sf(t)R(t); (5) 

pf(t) - -  Ph = Poe~t)R2(t), (6) 

where R(t) and R(t) are the radius and the velocity of the front; Ph = 9.81.poh is the litho- 
static pressure at the depth h; ef = 1 -- Po/P is the discontinuity of the density at the f 
front; and pf =--of is the pressure at the front. Here and in what follows the subscript 
f denotes values of the quantities at the front, while the subscript 0 denotes values in the 
unperturbed medium. 
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